Waste Tires: Changes to End Use Markets & Landfill Application Uses

Anna Maylett – CDPHE Waste Tire Inspector
Brian Gaboriau – CDPHE Waste Tire Grants Administrator
Terry Gray – Tetra Tech, Inc. / TAG Resource Recovery

Waste Tire Collection Facility requirements

- General operational parameters.
- Submit Annual report to the Department.
- Use only registered waste tire haulers.
- Notification of fire or other emergency involving waste tires.
- Manifest Requirements:
 - Maintain onsite for 3 years.
 - Shipments to or from facility manifest generated by hauler.
 - Shipments of waste tires (10 or more) from unregistered hauler, manifest generated by facility.

How is Colorado doing?*

- Recycling rate was 159% in 2016 (+12,000,000 waste tires end used or reused).
- Overall state waste tire inventory dropped by 4,700,000+ tires in 2016.
- Biggest recycling/end-uses:
 - Alternative daily cover = ~52% of all waste tires end used in the state in 2016
 - Tire-derived fuel of waste tires = ~22%
 - Salvage tires (reuse/retread)= ~13%

Changes in 2018

• January 1, 2018:
 • End Users Fund Program and Market Development Program repealed:
 • End Users Fund- rebates will continue for end use of tire-derived products until December 31, 2017.
 • Market Development Fund- Tetra Tech contract / market development programs will end on December 31, 2017.
 • Waste Tire Fee is reduced from $1.50 to $0.55 per new replacement tire.

What are challenges moving forward?

• Subsidy-based markets to a free market system.
• Replacing end user reimbursement income to allow continuation of a functional industry and markets.
• Increase in the cost of hauling / tipping fees.
• Increase in illegal dumping (maybe).
• Reduction of end uses and markets.
• Increase in waste tire inventories.
• Decrease in processing options / haulers.

What is next for Waste Tire Program

• CDPHE will:
 • Step up inspections of waste tire generators, haulers, processors and dumping sites.
 • Enforce regulations to remove economic benefit of illegal practices.
 • Review current regulations and policies to help minimize storage and illegal dumping issues.
 • Increase public awareness of waste tire issues and proper management of waste tires.

Illegal Waste Tire Cleanup Grants / Waste Tire Collection Events

• Funding for the cleanup of illegal waste tire sites
 • Since Fiscal Year 2011, over 630,000 illegal waste tires have been cleaned up.
 • In Fiscal Year 2017, 125,295 illegal waste tires were cleaned up.

• Waste Tire Collection Events
 • Funds for the hauling of waste tires for residential cleanup days in counties and municipalities.
 • Fourteen collection events completed since 2015 resulting in over 12,000 waste tires being collected.
 • Typically $3,000 per event.
Waste Tire Cleanup – Larimer County

Over 90,000 waste tires removed over 3+ years

Waste Tire Collection Events

Animas Mosquito Control District
3,637 Waste Tires Collected

Montezuma County Public Health
1,000 Waste Tires Collected

What is TDA?

Tire-Derived Aggregate (TDA) is:

- High permeability for many applications.
- Cost savings.
- Recycling (> 90,000 tires/acre – 1 ft. thick).

Why use Tire-Derived Aggregate?

Leachate Collection Systems Design Considerations

- Main function: minimize buildup of head on liner by transmitting leachate to collection pipes.
 - Permeability important
 - Resistance to clogging important
- Secondary function: protect liner from damage during operation.

Effect of vertical stress on void ratio

- **Void ratio of 0.2 limits vertical stress to 5,000 psf or about 67 feet of solid waste**

Clogging – Practical Advice

- Use conventional aggregate in critical areas, such as around collection pipes, esp. if acidogenic, calcium-rich leachate anticipated.
 - Conventional aggregate provides better support to pipes.
 - Select minimum allowable void ratio.

TDA use in landfills

- Donovan, et al., 1996

Design Considerations

- Main function: minimize buildup of head on liner by transmitting leachate to collection pipes.
 - Permeability important
 - Resistance to clogging important
- Secondary function: protect liner from damage during operation.
Use of TDA in Leachate Collection System

Key players:
Pasquale S. Canzano, P.E.
Delaware Solid Waste Authority
John J. Wood, P.E.
Camp Dresser and McKee
Joseph R. Matteo
Magnus Environmental Corp.
Dana N. Humphrey, P.E.
University of Maine

TDA in the leachate collection layer

- Use TDA in drainage layer.
- Drainage is important!
- Need to maintain a permeability similar to sand.
- Used more than 1 million tires.

Replace of a portion of the sand in the leachate collection layer

Use of TDA

Area of TDA
Leachate pump
Leachate collection pipe
800 feet
1250 feet
Case History
Frost Protection Layer

- Landfill in southeast Michigan
- Typical section
 - 15 in. leachate collection sand
 - Geocomposite drain
 - Geomembrane
 - 35 in. compacted clay
 - 18 in. Type A TDA

(Benson, et al., 1996)

Conventional Section

Section with TDA

Drainage Layers in Landfill Covers

- Low vertical stress, so permeability high.
- Must use geotextile between TDA and overlying vegetative support layer.
- Place TDA directly on geomembrane?
- If TDA placed on sloped geomembrane, check slope stability.
Case History
Landfill Cover (Andrews and Guay, 1996)

- DSI Landfill Superfund Site, Rockingham, VT
- Cross section of cap
 - 24-in. vegetative support layer
 - Geotextile filter
 - 12-in. sand or TDA with drain tubing
 - 40-mil textured geomembrane
 - 24-in. secondary barrier layer

Case History
Chiquita Landfill, Los Angeles County, CA
Gas Collection Trenches

- 3-ft x 3-ft trenches excavated into existing waste; perforated pipe placed in center.
- TDA covered with geotextile.

Chiquita Landfill

Chiquita Landfill
Conclusions

- TDA has properties that engineers need.
- TDA can be cost effective.
- Civil engineering applications an important use for scrap tires.
 - Multiple landfill applications
- Specifications and guidelines available.
- Negligible environmental effects.

Contact Information

Anna Maylett – CDPHE Waste Tire Inspector
Hazardous Materials & Waste Management Division
4300 Cherry Creek Drive South
Denver, CO 80246
303-692-3459
Anna.maylett@state.co.us

Brian Gaboriau – CDPHE Waste Tire Grants Administrator
Hazardous Materials & Waste Management Division
4300 Cherry Creek Drive South
Denver, CO 80246
303-692-2097
Brian.Gaboriau@state.co.us

Terry Gray
Tetra Tech, Inc. / T.A.G. Resource Recovery
18038 Radworthy Drive – Suite #110
Houston, TX 77084
281-463-7552
tagray@flash.net

Questions?